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Outline:

● Introduction

● Overview of a system

● The cryogenic refrigerator

● The vacuum chamber

● Providing a vacuum to insulate the experiment

● Temperature monitoring and control

● Getting an isothermal environment

● Getting microwave signal in and out

● Calibration issues

● Some references and conclusions
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Motivation:

● Provide some useful information to rf and microwave engineers who:
● have little or no experience with cryogenics
● have little or no experience with vacuum equipment
● wish to save themselves some grief by finding out from someone who

has been greatly grieved what does and doesn’t work

● Initiate and stimulate discussion of techniques for improving cryogenic mi-
crowave measurements and testing methods

● Firm belief that, even if HTS hasn’t “lived up” to the popular hype, cryogenic
electronics is a near term reality:
● colder is better — higher conductivity, higher mobility, less noise
● cryocooler and packaging technology is becoming affordable

Disclaimers:

● Where possible information about vendors and suppliers has been pro-
vided.  In no case should this be presumed to be an exhaustive list nor a
recommendation or endorsement
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System Options:

● Closed-cycle refrigerator
● Vibration — can be a problem — microphonics
● Self contained — no transfer of cryogenic fluids — no cryogen-

ic infrastructure required
● Reliable — based on cryopumps found in vacuum systems
● Not cheap
● Ensuring an isothermal environment is more difficult

● Open cycle — need cryogenic fluid (liquid Nitrogen or Helium most
common)
● Nitrogen is cheap and easy to handle but can’t get much below

77K
● Good if you can immerse in LN and are happy with one tem-

perature and can stand condensation on device
● Liquid Helium requires much more expertise in handling — can

get below 4K but is more expensive
● With either, if you want temperature control over wide range

you approach complexity of closed cycle system
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Components of a Closed Cycle System:

● Refrigerator
● Compressor — where heat is expelled — air or water cooled
● Expander — the gas expands and cools the “cold finger”
● Gas lines — often the expander and compressor are separate

units with two Helium gas lines connecting them (He plays the
role that Freon plays in your household refrigerator)

● Vacuum system — vacuum provides the insulation that allows the
DUT to be cooled
● Pump — various options from roughing pumps to turbo pumps
● Gauge — allows monitoring of chamber pressure 

● Temperature regulation — refrigerator runs unregulated — heaters
provide ability to adjust temperature
● Heaters — resistors
● Sensors (thermometers) — many options
● Controller — feedback loop between heater and sensor

● Vacuum chamber — provides thermal isolation of DUT
● Feed throughs — electrical, mechanical, optical
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The Chamber, Microwave Feedthrough and Temperature Controller
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The Basic Subsystems of a General Purpose
Cryogenic Microwave Test System
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Some of the Basic Components
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Basic Vacuum Chamber

Viewport/Optical Sliding Coax Feedthrough



Laboratory Closed-cycle Refrigerator:

● Assuming size, weight, and power consumption are of minimal im-
portance in laboratory setting, need to estimate:
● Minimum operating temperature
● Maximum heat load at that temperature

• generated within the DUT/sample
• due to thermal radiation and thermal conduction

● Many closed-cycle systems for laboratory use have been de-
veloped from the cryopump industry:
● Usually Gifford-McMahon cycle
● Typical cooling capacities: 10-50 Watts @ 77K and 5-15 Watts

@ 20K

● Some vendors:
● APD Cryogenics (www.apdcryogenics.com)
● CTI-Cryogenics (www.ctivacuum.com/enhanced/index.htm)
● CVI (www.chart-ind.com/cvi/crs/)
● Leybold Cryogenics (www.leyboldcryogenics.com)

MICROWAVE TECHNOLOGY BRANCH, NAVAL RESEARCH LABORATORY



Vacuum Chamber:

● Rely on standard commercial parts as much as possible
● Stainless steel components readily available

• stainless is the standard for UHV — minimal outgassing
• stainless is heavy
• wide range of standard component (building blocks) avail-

able to minimize custom work
● Custom stainless steel vacuum equipment is expensive

• welding to UHV standards is not trivial
• brass, aluminum, lucite, etc. are fine for custom/home

made parts

● Some vendors:
● MDC Vacuum Products Corp. (www.mdc-vacuum.com)
● Nor-Cal Products (www.snowcrest.net/norcal/index.html)
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Close-up of the Chamber, Cold Stage and Si Diode Sensor

Si diode
temperature

sensor



Top View of Cryogenic Chamber
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Vacuum Chamber — Feedthroughs:

● The ports and feedthroughs are as important as the chamber itself
● Flexibility

• have plenty of standard ports using one (maybe 2) flanges
• brass, aluminum, etc. are fine for custom parts

● Customizable
• standard flanges always have blank-off plates available
• an excellent starting point for custom feedthroughs

● Expandability — you always need more feedthroughs
• do not risk integrity of the basic chamber
• your needs will grow and it is best to be able to keep the

basic system geometry intact

● Types of feedthroughs (besides the obvious: coax cable and bias)
● Mechanical

• tuning screws on DUT, etc.
● Optical

• visual inspection — troubleshooting — show and tell
• optical response

● Radome
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Close-up of 6-port Sliding Coax Feedthrough
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Simple Mechanical Feedthrough for Tuning DUT



A Plexiglass Desiccator Cover for a Radome
or for Visual and Mechanical Access

MICROWAVE TECHNOLOGY BRANCH, NAVAL RESEARCH LABORATORY



Vacuum Considerations:

● With decent cooling capacity a rough pump down to ~100 milliTorr
is sufficient.  The refrigerator will then act as its own cryopump.

● Since the refrigerator is a better vacuum pump than a roughing
pump,  “backstreaming” of oil into the chamber can be a problem
● oil can coat the chamber, DUT and cabling — a mess at best
● solutions:

• valve off roughing pump — automate by using a pressure
gauge/controller (www.granville.com/275cam.htm,
www.mdc-vacuum.com)

• use turbo pump to evacuate chamber

● With a good roughing pump and large refrigerator, virtual leaks, out-
gassing and very small leaks are usually not a problem.

● Vent with Nitrogen to eliminate condensation on cold stage/DUT

● Some vacuum pump/system vendors:
● Alcatel - Balzers - Edwards - Leybold - Sargent Welch - Varian

- Precision - Shimadzu - Seiko Seiki - Kinney - Stokes - CTI 
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Temperature Control

● Most systems use a refrigerator running at full capacity and use re-
sistive heaters in conjunction with thermometers and a controller to
provide an isothermal testing environment.

● Standard practice is to use two thermometers
● Temperature control – mounted close to the heater
● Sample temperature – mounted on or as near as possible to

the DUT/sample
● ∆T of thermometers is a good measure of thermal design

● To provide good control at all temperature:
● Heater power > cooling power at all temperatures
● Ohmite “Metal-Mite” aluminum housed axial lead wirewound

resistors are a very robust heater (E.J. Cukauskas)
● “PID” controller provides best performance
● Autotuning features can be useful

● Cryogenic Temperature Controller manufacturers include
● Lakeshore Cryotronics  (www.lakeshore.com/)
● Scientific Instruments, Inc.  (www.sci-inst.com/)
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Thermometers/Sensors:

● Types:
● Diode — fast response, interchangeable, standard calibration 
● Resistor — larger, mounting strain induced errors, many types

with both PTC and NTC
● Capacitor — drift problems and thermal cycling problems, im-

mune to magnetic fields
● Thermocouple — errors due to temperature gradient of wire

● Characteristics — excellent product and Application Notes are
available from vendors — make sure your choice meets your
needs:
● Magnetic field sensitivity
● Size and Mass
● Reproducibility and Stability
● Accuracy/sensitivity/resolution
● Interchangeability
● Response time

● Recommendation:
Unless H fields are part of your experiment use 4-wire Si diode
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The Heater Resistors and Control Sensors

(This is the underside and mounts directly on the cold finger)
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Ensuring Good Thermal Contact:

● Minimize number of interfaces that heat must cross.

● Utilize materials such as Oxygen Free High Conductivity (OFHC) copper in
as much of the cold finger and DUT mounting platform as possible.
● not easy to machine
● particularly important for working much below 77K
● www.copperandbrass.com

● In all cases it is preferable to directly mount (screws) or clamp the DUT/
sample to the cold stage rather than rely on gravity.

● Once the chamber is under vacuum, thermal contact of DUT/sample to cold
stage must be ensured.  Options include:
● Thermal grease — Apeizon Type N or equivalent — messy
● Rubber cement — particularly good for small sample where concern

about use of solvents exists
● Indium foil — more difficult to use — may “stick” to sample and be de-

stroyed in removing — expensive
● Au foil/indium foil — even more expensive — Au is inert
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Thermal Behavior of Cryogenic Microwave Test Facility
Temperature Versus Time and Cooling/Heating Rates
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RF Feedthroughs:

● Balance the issues of attenuation versus heat leak.

● Heat leak not only loads the cooling capacity of the cooler it also is dump-
ing heat directly into the region of the DUT/sample that is being measured
leading to higher temperature uncertainty.

● In many laboratory cases, trading off attenuation for better thermal condi-
tions is preferable — the real world is much more challenging.

● Stainless steel coax is popular option compared to Cu

Cable Type Thermal load (W•cm) Insertion Loss (dB/cm)

0.085 Cu 14.97 0.022
0.141 SS 1.77 0.028
0.085 SS 0.90 0.048
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Coaxial Cable and Connector Considerations:

● Teflon has high coefficient of thermal expansion
● gaps can occur at low temperatures
● if possible use coax with special dielectric with low coefficient

of thermal expansion (ISOCORE by Rogers is no longer made)

● Hysteresis in teflon creep can lead to problems:
● Center conductor contact problems – “captured center pin”

connectors may be required especially for long straight cables.
● Measurement repeatability and, hence, calibration problems

● Any of the standard coax connector series (SMA, K, OS-50) can be
used — individual connectors within a series may be suboptimal

● Stainless cables require stainless compatible solders and fluxes.
Suggested solutions:
● Eutector Flux 157 and EutecRod 157 (Eutectic Corporation,

40-40 172nd St., Flushing, New York 11358)
● Indium Corporation of America (www.solder.com/index.html)
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Cold Stage with DUT Mounted
Background is 10 Layer MLI
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Measurement and Calibration Issues:

● Everything has some amount of temperature dependence — meas-
urement calibration is an issue
● If nothing else, the physical length changes
● IL of coax decreases — electrical length decreases

● Room temperature calibration
● reduced accuracy
● easy — same as always
● some first order correction for IL can be made in some cases

● Cryogenic calibration
● Standards, particularly loads, have temperature dependence

themselves — TRL preferable
● Tedious — unless a matched network using switches is used,

a cryogenic cycle is needed for each standard
● Instrument drift may be an issue

● Cryogenic calibration
● Standards, particularly loads, have temperature dependence

themselves — TRL preferable
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Measurement Error at Various Temperatures Illustrated
by Measurement of an SMA F-F Bulkhead Adapter

After Room Temperature Calibration
(using HP 85052D (SOL) 3.5mm economy cal kit)
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Measurement Error at Various Temperatures Illustrated
by Measurement of an SMA F-F Bulkhead Adapter

After Room Temperature Calibration
(using HP 85052D (SOL) 3.5mm economy cal kit)
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Measurement and Calibration Issues (cont.):

● The previous example was a worst case in many ways:
● The cable length subject to a thermal gradient was at a maxi-

mum (~20 cm)
• IL can be reduced by ~2X by using 0.141
• Use shorter cables — 5 cm of 0.141 cable would have a

0.5 Watt thermal load but would reduce IL by ~4X
• phase error would, similarly, be reduced by ~4X

● Based on measurements shown in previous graphs, these
modifications should result in IL error <~0.1 dB and phase error
<~0.5 degrees

● Possible complications:
● Thermal design of DUT/sample becomes more of an issue

since more heat is entering the DUT coaxial connectors.
• minimize layers and interfaces in DUT package
• place sample temperature sensor near coax connector
• more sample temperature sensors to monitor ∆T of DUT

● May need to customize coax feedthroughs to optimize this per-
formance for each DUT
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Measurement and Calibration Issues (cont.):

● Noise measurements can be particularly tricky to the unwary
● Standard Noise Figure Meters:

• assume that both ports of the DUT are available
• are scalar instruments — hence have problems with elec-

trically long low-loss devices
• cryogenic feedthroughs represent just such a problem —

additionally their electrical length and loss are temperature
dependent

• will happily report negative Noise Figures
● Proceed carefully from first principles

• even by deembedding from the cascade doesn’t really
solve the problem due to reflections

• an isolator can help with the reflection problems and make
deembedding more accurate in some cases

● Listen carefully to the two talks in this Workshop on this im-
portant topic
• low Noise Figure is one of the primary reasons cryogenic

operation is so promising
• it is the measurement area where standard commercial RT

techniques are least applicable



Some Suggested References:

● Cryogenic Engineering,  R.B. Scott, D. Van Nostrand Co. Inc.,
Princeton, New Jersey, 1959

● Experimental Techniques in Low-Temperature Physics, Third Edi-
tion,  G.B. White, Oxford Science Publications, Clarendon Press,
Oxford, 1979

● Cryogenic Process Engineering,  K.D. Timmerhaus and T.M. Flynn,
Plenum Press, New York, 1989

● Temperature Measurement and Control Catalog,  Lakeshore Cryo-
tronics, Inc., Westerville, Ohio

● Web sites:
www.omega.com/techref/itemp.html — The International Tem-
perature Scale of 1990 (ITS-90)
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Conclusions:

● Performance advantage of cryogenic operation is obvious.

● Cryocoolers for product are increasing in reliability and decreasing
in price — particularly if LN temperatures are not needed.

● Cryocoolers for laboratory use are very rugged and reliable.

● Assembling a laboratory system is basically an exercise in as-
sembling off-the-shelf hardware from different fields.

● Custom hardware can be minimized

● Measurement and calibration of a cryogenic system at microwave
frequencies, although more difficult than at room temperature,
involves basic trade-offs of speed versus accuracy — analogous to
issues that affect room temperature measurements as well — just
not as familiar to the microwave engineer and there is not, as yet, a
solution offered by the major microwave test and measurement
industry.
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